Date Log
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Sustainability of Nuclear Fuel Resources in Indonesia with Open and Closed Fuel Cycle
Corresponding Author(s) : R. Andika Putra Dwijayanto
Sustainability Science and Resources,
Vol. 4 (2023): Sustainability Science and Resources
Abstract
In the wake of climate change and global warming, various alternatives are being considered as a potential replacement for fossil fuels. Despite often being overlooked, nuclear power offers many benefits as a low-carbon energy source. Being a thermal power plant, nuclear power can generate energy reliably without relying on weather without emitting greenhouse gases during its operation. Serialised construction can reduce the capital cost, which often touted as expensive. Due to the commitment to the Paris Protocol, Indonesia is obliged to achieve carbon neutrality in its energy generation, and nuclear power is a plausible option to replace fossil fuel generation. One of the questions regarding nuclear power deployment in Indonesia is the sustainability of the nuclear fuel, especially considering its domestic resources both uranium and thorium. This study estimates how long uranium and thorium resources in Indonesia will last when used to power the nuclear power plants with open and closed fuel cycles. Several reactor designs were considered. The calculation result shows that domestic nuclear fuel resources in Indonesia can be sustainable enough, provided that closed nuclear fuel cycle is deployed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Bastori, I. and Birmano, M. D. (2017) ‘Analisis Ketersediaan Uranium di Indonesia untuk Kebutuhan PLTN Tipe PWR 1000 MWe’, Jurnal Pengembangan Energi Nuklir, 19(2), pp. 95–102.
- Berger, A. et al. (2017) ‘How much can nuclear energy do about global warming?’, International Journal of Global Energy Issues, 40(1/2), pp. 43–78.
- Brännlund, R., Ghalwash, T. and Nordström, J. (2007) ‘Increased energy efficiency and the rebound effect: Effects on consumption and emissions’, Energy economics. Elsevier, 29(1), pp. 1–17.
- Brook, B. W. et al. (2014) ‘Why nuclear energy is sustainable and has to be part of the energy mix’, Sustainable Materials and Technologies. Elsevier B.V., 1, pp. 8–16. doi: 10.1016/j.susmat.2014.11.001.
- CNBC Indonesia (2022) Siap Ditambang! Ini Wilayah RI Yang Punya Bahan Baku Nuklir. Available at: https://www.cnbcindonesia.com/news/20221215154719-4-397259/siap- ditambang-ini-wilayah-ri-yang-punya-bahan-baku-nuklir#:~:text=Melansir data Badan Tenaga Nuklir,juga thorium sebanyak 140.411 ton.&text=Dari total tersebut bahan baku,Sumatera%2C Kalimantan%2C dan Sulawesi. (Accessed: 2 February 2023).
- Cook, J. et al. (2013) ‘Quantifying the consensus on anthropogenic global warming in the scientific literature’, Environmental Research Letters. Institute of Physics Publishing, 8(2), p. 024024. doi: 10.1088/1748-9326/8/2/024024.
- Devanney, J. et al. (2015) ThorCon Executive Summary. Available at: http://thorconpower.com/docs/exec_summary2.pdf.
- Duan, L. et al. (2022) ‘Stylized least-cost analysis of flexible nuclear power in deeply decarbonized electricity systems considering wind and solar resources worldwide’, Nature Energy. Springer US, 7(3), pp. 260–269. doi: 10.1038/s41560-022-00979-x.
- Farmer, G. T. and Cook, J. (2013) Climate Change Science: A modern Synthesis. Dordrecht: Springer Science+Business Media.
- Government of Indonesia (2017) Presidential Decree No. 22 Year 2017 on National Energy Masterplan. Available at: https://www.esdm.go.id/assets/media/content/content- rencana-umum-energi-nasional-ruen.pdf.
- Hansen, J. et al. (2017) ‘Young people’s burden: Requirement of negative CO2 emissions’, Earth System Dynamics. Copernicus GmbH, 8(3), pp. 577–616. doi: 10.5194/esd-8-577- 2017.
- Hartanto, D. et al. (2020) ‘Neutronics Assessment of Accident-Tolerant Fuel in Advanced Power Reactor 1400 (APR1400)’, Atom Indonesia, 46(3), pp. 177–186. doi: 10.17146/aij.2020.1073.
- Hong, S., Bradshaw, C. J. A. and Brook, B. W. (2014) ‘South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs’, Energy Policy. Elsevier, 74(C), pp. 569–578. doi: 10.1016/j.enpol.2014.05.054.
- Huda, K., Rohman, B. and Lasman, A. N. (2011) ‘Challenges for Indonesia in Embarking to Nuclear Power’, Journal of Energy and Power Engineering, 5(8), pp. 379–384.
- Jeong, Y. et al. (2016) ‘Equilibrium core design methods for molten salt breeder reactor based on two-cell model’, Journal of Nuclear Science and Technology. Taylor & Francis, 53(4), pp. 529–536. doi: 10.1080/00223131.2015.1062812.
- Kharecha, P. A. and Hansen, J. E. (2013) ‘Prevented mortality and greenhouse gas emissions from historical and projected nuclear power’, Environmental Science and Technology,
- Sustainability Science and Resources, Vol. 4:4, 2023, pp. 47-59 58
- (9), pp. 4889–4895. doi: 10.1021/es3051197.
- Lamarsh, J. R. (1966) Introduction To Nuclear Reactor Theory. Boston: Addison-Wesley Publishing. doi: 10.1016/b978-0-12-547202-9.50012-7.
- Louw, A. (2018) ‘Clean energy investment trends’, Bloomberg New Energy Finance.
- Nuclear Energy Agency and International Atomic Energy Agency (2016) Uranium 2016 :
- Resources , Production and Demand. Boulogne-Billancourt.
- OECD NEA (2018) The Full Costs of Electricity Provision - Executive Summary, OECD-NEA.
- doi: 10.1787/9789264303119-en.
- Özdemir, L. et al. (2016) ‘Burnup analysis, natural U requirement and nuclear resource utilization in a combined PWR-CANDU system: Complete coprocessing and DUPIC scenarios’, Progress in Nuclear Energy, 91, pp. 140–146. doi: 10.1016/j.pnucene.2016.04.009.
- Park, J. et al. (2015) ‘Whole core analysis of molten salt breeder reactor with online fuel reprocessing’, International Journal of Energy Research, 39, pp. 1673–1680. doi: 10.1002/er.3371.
- Rachkov, V. I. et al. (2010) ‘Concept of an advanced power-generating unit with a BN-1200 sodium-cooled fast reactor’, Atomic Energy, 108(4), pp. 254–259. doi: 10.1007/s10512- 010-9286-z.
- Reda, S. M. et al. (2021) ‘Neutronic Performance of the VVER-1000 Reactor Using Thorium Fuel with ENDF Library’, Science and Technology of Nuclear Installations, 2021. doi: 10.1155/2021/8838097.
- Rubbia, C. (2016) ‘A Future for Thorium Power?’, in Thorium Energy for the World. Springer International Publishing, pp. 9–25. doi: 10.1007/978-3-319-26542-1_4.
- Thomas, S. (2018) ‘Russia’s nuclear export programme’, Energy Policy. Elsevier, 121, pp. 236–247.
- Tong, D. et al. (2019) ‘Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target’, Nature. Nature Publishing Group, 572(7769), pp. 373–377. doi: 10.1038/s41586-019-1364-3.
- United Nations (2023) SDG 7 Ensure access to affordable, reliable, sustainable and modern energy for all. Available at: https://sdgs.un.org/goals/goal7 (Accessed: 2 February 2023).
- Wang, S. et al. (2023) ‘Article Future demand for electricity generation materials under different climate mitigation scenarios under different climate mitigation scenarios’, pp. 1–24. doi: 10.1016/j.joule.2023.01.001.
References
Bastori, I. and Birmano, M. D. (2017) ‘Analisis Ketersediaan Uranium di Indonesia untuk Kebutuhan PLTN Tipe PWR 1000 MWe’, Jurnal Pengembangan Energi Nuklir, 19(2), pp. 95–102.
Berger, A. et al. (2017) ‘How much can nuclear energy do about global warming?’, International Journal of Global Energy Issues, 40(1/2), pp. 43–78.
Brännlund, R., Ghalwash, T. and Nordström, J. (2007) ‘Increased energy efficiency and the rebound effect: Effects on consumption and emissions’, Energy economics. Elsevier, 29(1), pp. 1–17.
Brook, B. W. et al. (2014) ‘Why nuclear energy is sustainable and has to be part of the energy mix’, Sustainable Materials and Technologies. Elsevier B.V., 1, pp. 8–16. doi: 10.1016/j.susmat.2014.11.001.
CNBC Indonesia (2022) Siap Ditambang! Ini Wilayah RI Yang Punya Bahan Baku Nuklir. Available at: https://www.cnbcindonesia.com/news/20221215154719-4-397259/siap- ditambang-ini-wilayah-ri-yang-punya-bahan-baku-nuklir#:~:text=Melansir data Badan Tenaga Nuklir,juga thorium sebanyak 140.411 ton.&text=Dari total tersebut bahan baku,Sumatera%2C Kalimantan%2C dan Sulawesi. (Accessed: 2 February 2023).
Cook, J. et al. (2013) ‘Quantifying the consensus on anthropogenic global warming in the scientific literature’, Environmental Research Letters. Institute of Physics Publishing, 8(2), p. 024024. doi: 10.1088/1748-9326/8/2/024024.
Devanney, J. et al. (2015) ThorCon Executive Summary. Available at: http://thorconpower.com/docs/exec_summary2.pdf.
Duan, L. et al. (2022) ‘Stylized least-cost analysis of flexible nuclear power in deeply decarbonized electricity systems considering wind and solar resources worldwide’, Nature Energy. Springer US, 7(3), pp. 260–269. doi: 10.1038/s41560-022-00979-x.
Farmer, G. T. and Cook, J. (2013) Climate Change Science: A modern Synthesis. Dordrecht: Springer Science+Business Media.
Government of Indonesia (2017) Presidential Decree No. 22 Year 2017 on National Energy Masterplan. Available at: https://www.esdm.go.id/assets/media/content/content- rencana-umum-energi-nasional-ruen.pdf.
Hansen, J. et al. (2017) ‘Young people’s burden: Requirement of negative CO2 emissions’, Earth System Dynamics. Copernicus GmbH, 8(3), pp. 577–616. doi: 10.5194/esd-8-577- 2017.
Hartanto, D. et al. (2020) ‘Neutronics Assessment of Accident-Tolerant Fuel in Advanced Power Reactor 1400 (APR1400)’, Atom Indonesia, 46(3), pp. 177–186. doi: 10.17146/aij.2020.1073.
Hong, S., Bradshaw, C. J. A. and Brook, B. W. (2014) ‘South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs’, Energy Policy. Elsevier, 74(C), pp. 569–578. doi: 10.1016/j.enpol.2014.05.054.
Huda, K., Rohman, B. and Lasman, A. N. (2011) ‘Challenges for Indonesia in Embarking to Nuclear Power’, Journal of Energy and Power Engineering, 5(8), pp. 379–384.
Jeong, Y. et al. (2016) ‘Equilibrium core design methods for molten salt breeder reactor based on two-cell model’, Journal of Nuclear Science and Technology. Taylor & Francis, 53(4), pp. 529–536. doi: 10.1080/00223131.2015.1062812.
Kharecha, P. A. and Hansen, J. E. (2013) ‘Prevented mortality and greenhouse gas emissions from historical and projected nuclear power’, Environmental Science and Technology,
Sustainability Science and Resources, Vol. 4:4, 2023, pp. 47-59 58
(9), pp. 4889–4895. doi: 10.1021/es3051197.
Lamarsh, J. R. (1966) Introduction To Nuclear Reactor Theory. Boston: Addison-Wesley Publishing. doi: 10.1016/b978-0-12-547202-9.50012-7.
Louw, A. (2018) ‘Clean energy investment trends’, Bloomberg New Energy Finance.
Nuclear Energy Agency and International Atomic Energy Agency (2016) Uranium 2016 :
Resources , Production and Demand. Boulogne-Billancourt.
OECD NEA (2018) The Full Costs of Electricity Provision - Executive Summary, OECD-NEA.
doi: 10.1787/9789264303119-en.
Özdemir, L. et al. (2016) ‘Burnup analysis, natural U requirement and nuclear resource utilization in a combined PWR-CANDU system: Complete coprocessing and DUPIC scenarios’, Progress in Nuclear Energy, 91, pp. 140–146. doi: 10.1016/j.pnucene.2016.04.009.
Park, J. et al. (2015) ‘Whole core analysis of molten salt breeder reactor with online fuel reprocessing’, International Journal of Energy Research, 39, pp. 1673–1680. doi: 10.1002/er.3371.
Rachkov, V. I. et al. (2010) ‘Concept of an advanced power-generating unit with a BN-1200 sodium-cooled fast reactor’, Atomic Energy, 108(4), pp. 254–259. doi: 10.1007/s10512- 010-9286-z.
Reda, S. M. et al. (2021) ‘Neutronic Performance of the VVER-1000 Reactor Using Thorium Fuel with ENDF Library’, Science and Technology of Nuclear Installations, 2021. doi: 10.1155/2021/8838097.
Rubbia, C. (2016) ‘A Future for Thorium Power?’, in Thorium Energy for the World. Springer International Publishing, pp. 9–25. doi: 10.1007/978-3-319-26542-1_4.
Thomas, S. (2018) ‘Russia’s nuclear export programme’, Energy Policy. Elsevier, 121, pp. 236–247.
Tong, D. et al. (2019) ‘Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target’, Nature. Nature Publishing Group, 572(7769), pp. 373–377. doi: 10.1038/s41586-019-1364-3.
United Nations (2023) SDG 7 Ensure access to affordable, reliable, sustainable and modern energy for all. Available at: https://sdgs.un.org/goals/goal7 (Accessed: 2 February 2023).
Wang, S. et al. (2023) ‘Article Future demand for electricity generation materials under different climate mitigation scenarios under different climate mitigation scenarios’, pp. 1–24. doi: 10.1016/j.joule.2023.01.001.