Date Log
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Effects of Air Pollutants, Particulate Matter 10 (PM10), Sulphur Dioxide (SO2) and Nitrogen Dioxide (NO2) on COVID-19 cases in Indonesia
Corresponding Author(s) : Erwin Dariyanto
Sustainability Science and Resources,
Vol. 2 (2022): Sustainability Science and Resources
Abstract
This study aims to analyse the effects of air pollutants on the number of COVID-19 cases in Indonesia. Three pollutants, i.e. Particulate matter 10 (PM10), Sulphur dioxide (SO2) and Nitrogen dioxide (NO2), were analysed. The study covers a period of 1 March 2020 to 31 December 2020 involving data from the cities of Jakarta, Bandung, Yogyakarta, Semarang and Surabaya in Indonesia.
This study used the Ordinary Least Square (OLS) method with the endurance test Robust Standard Errors. The regression results showed that PM10, SO2 and NO2 are statistically significant positive regressors of the number of COVID19 cases. Every 1 μg/m3 increase in PM10, SO2 and NO2 concentrations is shown to cause an additional 2.65, 7.96 and 21.01 cases of COVID-19, respectively. The implementation of Large-Scale Social Restrictions (PSBB) has a statistically significant impact in curbing COVID-19 transmission; reducing 447.4 cases of COVID-19.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- REFERENCES
- Alma, O.G. (2011), Comparison of Robust Regression Methods in Linear Regression. International Journal Contemporary Mathematical Sciences 6(9): 409—421.
- Anderson, J.O., Thundiyil JG, and Stolbach, A. (2012), Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. Journal of Medical Toxicology 8(2): 166—175. DOI: https://doi.org/10.1007/s13181-011-0203-1
- Badi H. Baltagi (2005), Econometric Analysis of Panel Data. Third edition. Chichester: John Wiley & Sons.
- Banerji, S., and Mitra, D. (2021), Assessment of Air Quality in Kolkata Before and After COVID-19 Lockdown. Geocarto International: 1—24. DOI:10.1080/10106049.2021.1936209
- Beck, N., and Katz, J.N. (1995), What to do (and not to do) with Time-Series Cross-Section Data. The American Political Science Review 89(3): 634—647. DOI: https://doi.org/10.2307/2082979
- Contini, D., and Costabile, F. (2020), Does Air Pollution Influence COVID-19 Outbreaks?. Atmosphere Journal 11(4): 377. DOI: https://doi.org/10.3390/atmos11040377
- Cui, Y., Zhang, Z.F., Froines, J., Zhao, J., Wang, H., Yu, S.Z., and Detels, R. (2003), Air Pollution and Case Fatality of SARS in the People's Republic of China: An Ecologic Study. Environmental Health 2(1): 15. DOI: https://doi.org/10.1186/1476-069X-2-15
- Firmansyah, H., Fadlillah, A.N., and Pawitra, A.S. (2020), Particulate Matter as Driven Factor Covid-19 Transmission at Outdoor: Review. Journal of Environmental Health 12(3): 225—234. DOI: http://dx.doi.org/10.20473/jkl.v12i3.2020.225-234
- Gautam, S. (2020), The Influence of COVID–19 on Air Quality in India: A Boon or Inutile. Bulletin of Environmental Contamination and Toxicology 104(6): 724—726. DOI: 10.1007/s00128-020-02877-y
- He Li, Xiao-Long Xu, Da-Wei Dai, Zhen-Yu Huang, Zhuang Ma, and Yan-Jun Guan (2020), Air Pollution and Temperature are Associated with Increased COVID-19 Incidence: A Time Series Study. International Journal of Infectious Disease 97: 278—282. DOI: 10.1016/j.ijid.2020.05.076
- Hoechle, D. (2007), Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence. The Stata Journal 7(3): 281—312. DOI: https://doi.org/10.1177/1536867X0700700301
- Huang, C., Wang, Y., Li, X., Ren, L., Zaho, J., Hu, Y., Zhang, L., Fan, G, Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, Z., Jin, Q., Wang, J., Cao, B. (2020), Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. The Lancet 395. DOI: 10.1016/S0140-6736(20)30183-5
- Jain, N., Choudhury A., Sharma, J., Kumar, V., De D., Tiwari, R.A. (2020), A Review of Novel Coronavirus Infection (Coronavirus Disease-19). Global Journal of Transfusion Medicine 5:22—26. DOI: 10.4103/GJTM.GJTM_24_20
- Kementerian Kesehatan (n.d.). COVID-19 Indonesia. Available at: https://covid19.kemkes.go.id/. [Accessed from 18 August 2021]
- Kim, B.M., Park, J.S, Kim, S.W., Kim, H. (2015), Source Apportionment of PM10 Mass and Particulate Carbon in the Kathmandu Valley, Nepal. Atmospheric Environment 123: 190—199. DOI:10.1016/j.atmosenv.2015.10.082
- Landguth, E., Holden, Z., Graham, J., Stark, B., Mokhtari, B.E., Kaleczyc, E., Anderson, S., Urbanski, S., Jolly, M., Semmens, E.O., Warren, D.A., Swanson, A., Stone, E., Noonan, C. (2020), The Delayed Effect of Wildfire Season Particulate Matter on Subsequent Influenza Season in a Mountain West Region of the USA. Environmental International 139. DOI: https://doi.org/10.1016/j.envint.2020.105668
- Lee B.J., Kim B., and Lee K. (2014), Air Pollution Exposure and Cardiovascular Disease. Toxicological Research 30(2): 71—75. DOI: 10.5487/tr.2014.30.2.071
- Persico, C.L. and Johnson, K.R. (2021), The Effects of Increased Pollution on COVID-19 Cases and Deaths. Journal of Environmental Economics and Management 107. DOI: 10.1016/j.jeem.2021.102431
- Setti, L., Passarini, F., Gennaro, G.D, Barbieri, P., Perrone, M.G., Piazzalunga, A., Borelli, M., Palmisani, J., Gilio, A.D, Piscitelli, P., Miani, A. (2020), Potential Role of Particulate Matter in the Spreading of COVID-19 in Northern Italy: First Evidence-based Research Hypotheses. BMJ Open 10. DOI: https://doi.org/10.1101/2020.04.11.20061713
- Setti, L., Passarini, F., Gianluigi, G.D., Gillo A.D., Palmissani, J., Buono, P., Fornari, G., Perrone, M.G., Piazzalunga, A., Barbieri, P., Rizzo, E., Miani, A. (2020), Evaluation of the Potential Relationship between Particulate Matter (PM) Pollution and COVID-19 Infection Spread in Italy. Accessible at: https://www.ptpz.pl/wp-content/uploads/2020/04/COVID_19_position-paper_ENG1.pdf
- Vogelsang, T.J. (2012), Heteroskedasticity, Autocorrelation, and Spatial Correlation Robust Inference in Linear Panel Models with Fixed-Effects. Journal of Econometrics 166(2): 303—319. DOI:10.1016/j.jeconom.2011.10.001
- Valavanidis, A., Fiotakis, K., and Vlachogianni, T. (2008), Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms. Journal Environmental Science and Health 26(4): 339—362. DOI:10.1080/10590500802494538
- Wooldridge, J.M. (2016), Introductory Econometrics: A Modern Approach. 6th edition. Boston: Cengage Learing.
- Zhou, L., Ayeh, S.K., Chidambaram, V., and Karakousis, P.C. (2021), Modes of Transmission of SARS-CoV-2 and Evidence for Preventive Behavioral Interventions. BMC Infectious Diseases 21(496). DOI: https://doi.org/10.1186/s12879-021-06222-4
References
REFERENCES
Alma, O.G. (2011), Comparison of Robust Regression Methods in Linear Regression. International Journal Contemporary Mathematical Sciences 6(9): 409—421.
Anderson, J.O., Thundiyil JG, and Stolbach, A. (2012), Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. Journal of Medical Toxicology 8(2): 166—175. DOI: https://doi.org/10.1007/s13181-011-0203-1
Badi H. Baltagi (2005), Econometric Analysis of Panel Data. Third edition. Chichester: John Wiley & Sons.
Banerji, S., and Mitra, D. (2021), Assessment of Air Quality in Kolkata Before and After COVID-19 Lockdown. Geocarto International: 1—24. DOI:10.1080/10106049.2021.1936209
Beck, N., and Katz, J.N. (1995), What to do (and not to do) with Time-Series Cross-Section Data. The American Political Science Review 89(3): 634—647. DOI: https://doi.org/10.2307/2082979
Contini, D., and Costabile, F. (2020), Does Air Pollution Influence COVID-19 Outbreaks?. Atmosphere Journal 11(4): 377. DOI: https://doi.org/10.3390/atmos11040377
Cui, Y., Zhang, Z.F., Froines, J., Zhao, J., Wang, H., Yu, S.Z., and Detels, R. (2003), Air Pollution and Case Fatality of SARS in the People's Republic of China: An Ecologic Study. Environmental Health 2(1): 15. DOI: https://doi.org/10.1186/1476-069X-2-15
Firmansyah, H., Fadlillah, A.N., and Pawitra, A.S. (2020), Particulate Matter as Driven Factor Covid-19 Transmission at Outdoor: Review. Journal of Environmental Health 12(3): 225—234. DOI: http://dx.doi.org/10.20473/jkl.v12i3.2020.225-234
Gautam, S. (2020), The Influence of COVID–19 on Air Quality in India: A Boon or Inutile. Bulletin of Environmental Contamination and Toxicology 104(6): 724—726. DOI: 10.1007/s00128-020-02877-y
He Li, Xiao-Long Xu, Da-Wei Dai, Zhen-Yu Huang, Zhuang Ma, and Yan-Jun Guan (2020), Air Pollution and Temperature are Associated with Increased COVID-19 Incidence: A Time Series Study. International Journal of Infectious Disease 97: 278—282. DOI: 10.1016/j.ijid.2020.05.076
Hoechle, D. (2007), Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence. The Stata Journal 7(3): 281—312. DOI: https://doi.org/10.1177/1536867X0700700301
Huang, C., Wang, Y., Li, X., Ren, L., Zaho, J., Hu, Y., Zhang, L., Fan, G, Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, Z., Jin, Q., Wang, J., Cao, B. (2020), Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. The Lancet 395. DOI: 10.1016/S0140-6736(20)30183-5
Jain, N., Choudhury A., Sharma, J., Kumar, V., De D., Tiwari, R.A. (2020), A Review of Novel Coronavirus Infection (Coronavirus Disease-19). Global Journal of Transfusion Medicine 5:22—26. DOI: 10.4103/GJTM.GJTM_24_20
Kementerian Kesehatan (n.d.). COVID-19 Indonesia. Available at: https://covid19.kemkes.go.id/. [Accessed from 18 August 2021]
Kim, B.M., Park, J.S, Kim, S.W., Kim, H. (2015), Source Apportionment of PM10 Mass and Particulate Carbon in the Kathmandu Valley, Nepal. Atmospheric Environment 123: 190—199. DOI:10.1016/j.atmosenv.2015.10.082
Landguth, E., Holden, Z., Graham, J., Stark, B., Mokhtari, B.E., Kaleczyc, E., Anderson, S., Urbanski, S., Jolly, M., Semmens, E.O., Warren, D.A., Swanson, A., Stone, E., Noonan, C. (2020), The Delayed Effect of Wildfire Season Particulate Matter on Subsequent Influenza Season in a Mountain West Region of the USA. Environmental International 139. DOI: https://doi.org/10.1016/j.envint.2020.105668
Lee B.J., Kim B., and Lee K. (2014), Air Pollution Exposure and Cardiovascular Disease. Toxicological Research 30(2): 71—75. DOI: 10.5487/tr.2014.30.2.071
Persico, C.L. and Johnson, K.R. (2021), The Effects of Increased Pollution on COVID-19 Cases and Deaths. Journal of Environmental Economics and Management 107. DOI: 10.1016/j.jeem.2021.102431
Setti, L., Passarini, F., Gennaro, G.D, Barbieri, P., Perrone, M.G., Piazzalunga, A., Borelli, M., Palmisani, J., Gilio, A.D, Piscitelli, P., Miani, A. (2020), Potential Role of Particulate Matter in the Spreading of COVID-19 in Northern Italy: First Evidence-based Research Hypotheses. BMJ Open 10. DOI: https://doi.org/10.1101/2020.04.11.20061713
Setti, L., Passarini, F., Gianluigi, G.D., Gillo A.D., Palmissani, J., Buono, P., Fornari, G., Perrone, M.G., Piazzalunga, A., Barbieri, P., Rizzo, E., Miani, A. (2020), Evaluation of the Potential Relationship between Particulate Matter (PM) Pollution and COVID-19 Infection Spread in Italy. Accessible at: https://www.ptpz.pl/wp-content/uploads/2020/04/COVID_19_position-paper_ENG1.pdf
Vogelsang, T.J. (2012), Heteroskedasticity, Autocorrelation, and Spatial Correlation Robust Inference in Linear Panel Models with Fixed-Effects. Journal of Econometrics 166(2): 303—319. DOI:10.1016/j.jeconom.2011.10.001
Valavanidis, A., Fiotakis, K., and Vlachogianni, T. (2008), Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms. Journal Environmental Science and Health 26(4): 339—362. DOI:10.1080/10590500802494538
Wooldridge, J.M. (2016), Introductory Econometrics: A Modern Approach. 6th edition. Boston: Cengage Learing.
Zhou, L., Ayeh, S.K., Chidambaram, V., and Karakousis, P.C. (2021), Modes of Transmission of SARS-CoV-2 and Evidence for Preventive Behavioral Interventions. BMC Infectious Diseases 21(496). DOI: https://doi.org/10.1186/s12879-021-06222-4